Consultar ensayos de calidad


Equilibrio - estÁtica, equilibrio de un cuerpo rigido, torque o momento de fuerza, condiciones de equelibrio



EQUILIBRIO
ESTÁTICA
La estática estudia los cuerpos que están en equilibrio, que es el estado de un cuerpo no sometido a aceleración; un cuerpo, que está en reposo, o estático, se halla por lo tanto en equilibrio.
Para que un objeto este en equilibrio es necesario que todas las fuerzas que actúan sobre él se compese exactamente. Cuando, empleado este criterio, se establece que un objeto este en equilibrio, se puede deducir la estabilidad de dicho equilibro.
La estática tiene como objetivo, establecer si bajo la acción simultánea de varias fuerzas, un cuerpo se halla o no en equilibrio.
EQUILIBRIO DE UN CUERPO RIGIDO
Si se aplican fuerzas a un cuerpo rígido, su equilibrio con respecto a un sistema de referencia inercial estará determinado por:


• primera condición de equilibrio: que es la suma de las fuerzas aplicadas al cuerpo es cero.
• Segunda condición de equilibrio: es la suma algebraica de los momentos con respecto a un punto de las fuerzas aplicadas es igual a cero.
TORQUE O MOMENTO DE FUERZA
Es una magnitud vectorial cuando las fuerzas actúan sobre los cuerpos, pueden alterar su movimiento lineal o su rotación.
El efecto de una fuerza dado sobre el movimiento de rotación de un cuerpo depende del valor de la fuerza, de la distancia del punto de aplicación de la fuerza al eje degiro y de la dirección de la fuerza con respecto a la línea que une el punto de aplicación de esta con el eje de giro generalmente se considera un toque positivo cuando tiende a producir rotación en sentido contrario a las manecillas del reloj y negativo en sentido de las manecillas del reloj.
UNIDADES DE TORQUE
S.I: Como el torque es el producto de una fuerza por una distancia su unidad de medida será: T= f . d =1Newton . 1metro =N . m
C.G.S: El torque estera dado por: T= f . d = 1 DINA . 1 centímetro = d.cm
CONDICIONES DE EQUELIBRIO
PRIMERA CONDICIÓN: EQUILIBRIO DE TRASLACIÓN
Cuando se estudio la primera ley de Newton, llegamos a la conclusión de que si sobre un cuerpo no actúa ninguna fuerza externa, este permanece en reposo en un movimiento rectilíneo uniforme. Pero sobre un cuerpo pueden actuar varias fuerzas y seguir en reposo en un movimiento rectilíneo uniforme.
Hay que tener en cuenta, que tanto para la situación de reposo, como para la de movimiento rectilíneo uniforme la fuerza neta que actúa sobre un cuerpo es igual a cero.
ECUACIONES
Si las fuerzas que actúan sobre un cuerpo son F1, F2, Fn, el cuerpo se encuentra en equilibrio de traslación si : Fr = F1 + F2 + ..Fn = 0
Si se utiliza un sistema de coordenaas cartesianas en cuyo origen colocamos el cuerpo y sobre los ejesproyectamos las fuerzas que actúan sobre el cuerpo, tendremos: Fx = 0 y Fy = 0
SEGUNDA CONDICION: EQUILIBRIO DE ROTACIÓN
Si a un cuerpo que puede girar alrededor de un eje, se la aplican varias fuerzas y no producen variación en su movimiento de rotación, se dice que el cuerpo puede estar en reposo o tener movimiento uniforme de rotación.
También se puede decir que un cuerpo se encuentra en equilibrio de rotación si la suma algebraica de los momentos o torques de las fuerzas aplicadas al cuerpo, respecto a un punto cualquiera debe ser igual a cero. Esto es T= 0
Un cuerpo de 15 kg cuelga en reposo arrollado en torno a un cilindro de 12 cm de diámetro. Calcular el torque respecto al eje del cilindro.
La barra homogénea mostrada en la figura puede rotar alrededor de O. Sobre la barra se aplican las fuerzas F1 = 5 d , F2 = 8 d y F3= 12 d, si se sabe que OA = 10 cm, OB = 4 cm y OC = 2 cm.. Entonces
• Calcula el torque de cada una de las fuerzas con relación a O.
• Calcula el valor del torque resultante que actúa sobre el cuerpo.
• sCuál es el sentido de rotación que el cuerpo tiende a adquirir ?
• s Cuál debe ser el valor y el sentido de la fuerza paralela a F1 y F2 que se debe aplicar en C para que la barra quede en equilibrio ?
La barra mostrada en la figura, soporta un cuerpo de 5 kg.Calcular el torque creado por este cuerpo respecto a un eje que pasa por
• el extremo superior
• el punto medio en la barra
un automóvil de 2000 kg tiene ruedas de 80cm de diámetro. Se acelera partiendo de reposo hasta adquirir una velocidad de 12m/s en 4 seg. Calcular
• La fuerza aceleradora necesaria
• El torque que aplica a cada una de las ruedas motrices para suministrar esta fuerza.
Calcula el valor de la masa(m) y el de x para que las balanzas mostradas en la figura se encuentren en equilibrio.
Un cuerpo de 20 kg se suspende mediante tres cuerdas como muestra la figura. Calcular las fuerzas de tensión ejercida por cada cuerda.
El antebrazo mostrado en la figura sostiene un cuerpo de 4 kg. Si se encuentra en equilibrio, calcular la fuerza ejercida por el músculo bíceps. Considera que la masa del antebrazo es de 2kg y actúa sobre el punto P (sugerencia: aplica torques con respecto a la articulación del codo
Una escalera de 3m de longitud y 8 kg de masa está recargada sobre una pared sin rozamiento como muestra la figura. Determina el mínimo coeficiente de fricción (Us) entre el piso y la escalera, para que la escalera no resbale.
Encontrar la masa del cuerpo homogéneo mostrado en la figura, si el dinamómetro marca 35 N (g =10m/s)
En los extremos de una palanca de primer genero de 10kg,cuelga dos masas de 3kg y 9kg.sDónde se encuentra el punto de apoyo si la palanca mide 40 cm y se encuentra equilibrada?
Una palanca de tercer género mide 50 cm y tiene una masa de 250 g; si a 30 cm del punto de apoyo se coloca una masa de 300g.squé resistencia se podrá equilibrar?
En el sistema mostrado en la figura R = 380N sCuánto vale la fuerza motriz F?
En el polipasto mostrado en la figura. La fuerza F vale 800N. sCuánto vale la resistencia R?
Tercer tipo de palanca

Una palanca es de tercer tipo cuando la potencia se encuentra entre el punto de apoyo y la resistencia.
En este tipo de palancas, el brazo de potencia siempre es menor que el brazo de resistencia y, por lo tanto, la potencia es mayor que la resistencia. Entonces, siempre se pierde fuerza, pero se gana comodidad, y la resistencia tiene un gran movimiento.
Ejemplos:
INTRODUCCION

El presente Trabajo Monográfico es un trabajo basado en las leyes del equilibrio, la misma que tienen mucho que ver en nuestro futuro agrícola, sobretodo en nosotros los jóvenes universitarios, que tenemos el legado de cuidar nuestro medio ambiente y mantenerlo en equilibrio con la naturaleza.

<
En este trabajo se puede apreciar diversos puntos y aspectos de este tema tan importante en nuestra carrera, como los tipos, suorigen, su evolución, formas y otros. Las semillas constituyen un enorme potencial para la conservación y manejo de nuestros recursos naturales. Desafortunadamente, en las zonas tropicales el conocimiento de la biología de las semillas se restringe a unas cuantas especies. Ello se refleja en los problemas que aún persisten para su almacenamiento y conservación.

Deseando que este al agrado de todos, quedo de Uds. para apreciar este trabajo



Tipos de palanca
Las palancas se dividen en tres géneros, también llamados órdenes o clases, dependiendo de la posición relativa de los puntos de aplicación de la potencia y de la resistencia con respecto al fulcro (punto de apoyo). El principio de la palanca es válido indistintamente del tipo que se trate, pero el efecto y la forma de uso de cada uno cambian considerablemente.
[editar]Palanca de primera clase

En la palanca de primera clase, el fulcro se encuentra situado entre la potencia y la resistencia. Se caracteriza en que la potencia puede ser menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia. Para que esto suceda, el brazo de potencia Bp ha de ser mayor que el brazo de resistencia Br
Cuando lo que se requiere es ampliar la velocidad transmitida a un objeto, o ladistancia recorrida por éste, se ha de situar el fulcro más próximo a la potencia, de manera que Bp sea menor que Br.
Ejemplos de este tipo de palanca son el balancín, las tijeras, las tenazas, los alicates o la catapulta (para ampliar la velocidad). En el cuerpo humano se encuentran varios ejemplos de palancas de primer género, como el conjunto tríceps braquial - codo - antebrazo.
[editar]Palanca de segunda clase

En la palanca de segunda clase, la resistencia se encuentra entre la potencia y el fulcro. Se caracteriza en que la potencia es siempre menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia.
Ejemplos de este tipo de palanca son la carretilla, los remos y el cascanueces.


El punto de apoyo de los remos se encuentra en el agua.
[editar]Palanca de tercera clase

En la palanca de tercera clase, la potencia se encuentra entre la resistencia y el fulcro. Se caracteriza en que la fuerza aplicada es mayor que la resultante; y se utiliza cuando lo que se requiere es ampliar la velocidad transmitida a un objeto o la distancia recorrida por él.
Ejemplos de este tipo de palanca son el quitagrapas y la pinza de cejas; y en el cuerpo humano, el conjunto codo - bíceps braquial -antebrazo, y la articulación temporomandibular.


Política de privacidad