Consultar ensayos de calidad


Ciencia ambiental - ¿Qué es el planeta tierra?, ¿En qué consiste la piramide ecológica?



1. ¿Qué es el planeta tierra?
Es un sistema viviente , constituido por dos subsistemas (el fisiso que es el flujo de energía y el biológico que es el flujo de materia
2. ¿De qué otra manera de le conoce al planeta tierra?
Gaia o planeta azul
3.
¿En la litosfera que se desarrolla?
las placas tectónicas donde se concentran los fenómenos geológicos
4. ¿Explica que es homeostasis?
Equilibrio y regulación de la temperatura del planeta
5. ¿Qué permite la mantener la biodiversidad?
La estabilidad y equilibrio de los ecosistemas
6. ¿Explica que es el subsistema físico?


es el flujo de energía emitida por los rayos del sol que permiten la fotosíntesis
7. Menciona cuales son los consumidores primarios y los consumidores secundarios.
Primarios: herbívoros
Secundarios: carnívoros
8. ¿En qué consiste la piramide ecológica?
Denota la disminución de las variables, energía ,biomasa y el numero de individuos
9. ¿Qué es el flujo de energía?
Es la energía solar que genera la fotosíntesis
10.
¿Qué es el ciclo biogeoquimico?
Es la combinación de los procesos biológicos, geológicos y químicos
11.
¿Qué es el flujo de materia?
Es el intercambio de sustancias químicas en la biosfera
12.
¿Cual es el proceso del ciclo gaseoso?
Son las sustancias que circulan en la atmosfera
13.
Menciona los dosciclos que conforman el ciclo sedimentario.
Fosforo y azufre
14.
¿En qué consiste el ciclo hidrológico?
Evaporación , precipitación y gaseoso
15. Menciona cuales fueron los primeros seres vivos sobre la tierra.
Protozoarios y procariontes



be used to produce hydrogen or methane. In Chapter 7 “Waste to Renewable Energy: A Sustainable and Green Approach Towards Production of Biohydrogen by Acidogenic Fermentation”, Mohan provides a detailed review of the state of the art with regard to biological hydrogen production using waste and wastewater as substrates with dark fermentation processes. Many biological processes use mixed cultures operating under non-sterile conditions (e.g. biological hydrogen and methane production, as discussed above). Watanabe et al. in Chapter 8 “Bacterial Communities in Various Conditions of the Composting Reactor Revealed by 16S rDNA Clone Analysis and Denaturing Gradient Gel Electrophoresis” demonstrate the utility of 16S rRNA analysis and denaturing gradient gel electrophoresis (DGGE) techniques for tracking microbialcommunities within a mixed and changing culture. Their work uses a composting process, which offers a typically cost-effective alternative to incineration for the remediation of contaminated soil. The production of liquid fuel from biomass necessitates the consideration of various issues such as the effects on the food supply, the rainforest, and greenhouse gas production, as well as carbon sustainability certiï¬cation. Some of these issues may require appropriate regulations and in Chapter 9 “Perspectives on Bioenergy and Biofuels”, Scott et al., examine these issues closely. In addition to its environmental advantages, the use of renewable energy resources offers the potential for stimulation of the economies of the nations where they are produced. The potential products of these renewable materials extend well beyond liquid fuels alone. Owing partly to the enormous volume of their production, fuels are sold for relatively low prices, and the successful implementation of renewable fuels depends, at least initially, on their ability to compete in the marketplace. To this end, it is particularly important to maximize the efï¬ciency of their production in bioreï¬neries where secondary products would be derived from the same feedstock as the fuels. As an example, petroleum reï¬neries have been in operation for over 150 years and now produce lubricants, plastics, solvents, detergents, etc., all from the starting crude oil [6]. Similarly, biomass, in addition to being used for the production of fuels, can be used as a starting material for the production of other value-addedproducts of microbial bioconversion processes such as fermentable sugars, organic acids and enzymes. In Chapter 10 “Perspectives on Chemicals from Renewable Resources”, Scott et al. describe how, with the aid of biotechnology, Protamylase R generated from starch production, can be used as a medium for the production of a cynophycin polymer, which is a major source of arginine and aspartic acid for the production of many industrially useful compounds including 1 -butanediamine and succinic acid. In Chapter 11 “Microbial Lactic Acid Production from Renewable Resources”, Li and Cui describe the production of lactic acid from renewable resources such as starch biomass, cheese whey etc. Lactic acid has recently gained attention due its application to the manufacture of biodegradable polymers. Among other renewable resources, Chapter 12 “Microbial Production of Potent Phenolic-Antioxidants Through Solid State Fermentation”, Martin et al. describe the role of agroindustrial residues including plant tissues rich in polyphenols for the microbial bioconversion of potent phenolics under solid state



fermentation conditions. Hence, combined with the economy of scale derived from large reï¬neries, secondary products could be key to bridging the price gap between fossil fuels and renewables. One critical advantage of biofuels is their potential to achieve a reduction in greenhouse gas releases, since the plants from which they are produced derive their carbon from the atmosphere. The overallbalance of greenhouse gases however, depends in large measure on the particular feedstocks used and the methods by which they are produced. Corn ethanol for instance, while being potentially carbon neutral, is not likely to achieve an overall reduction in greenhouse gas release due to its requirement for nitrogenous fertilizer and the associated release of nitrous oxide [7]. An interesting approach to the production of biodiesel is the use of algae to synthesize oil from the CO2 they capture for growth. Algae cultivation offers a potential low-cost alternative to physical methods of carbon sequestration such as pumping liquid CO2 underground or underwater or chemical methods such as base-mediated capture of CO2 and subsequen 16.
¿Cuales es la regla de la sustentabilidad?
La productividad debe ser mayor que el consumo
17. Menciona la diferencia entre sustentabilidad y sostenible
Sustentabilidad: quitamos y no reponemos
Sostenibilidad : quitamos y reponemos
18. ¿De qué otra manera el hombre contamina el planeta no siendo industrial?
Consumismo, acuicultura, ganadería
19.
Explica la fotosíntesis
Es la energía solar que transforma las plantas
20.
Menciona la diferencia entre un bien y servicio.
Un bien: son los recursos naturales
Un servicio: son las condiciones que proporcionan los ecosistemas
21. ¿Cual es el principal producto que consume y depende el ser humano?
Agua H2O
22.
Explica en qué consiste el soporte vital
Son aquellos que protegen de los rayos solares ultra violeta , limpian el aire asi como el agua y suelo
23. ¿De qué manera se da el agotamiento de los servicios ambientales?
Por sobrepoblación , huella ecológica
24. ¿En qué consiste el factor limitante y capacidad de carga?
Dinamica poblacional de las especies como la erosión y agotamiento de los recursos


Política de privacidad