Consultar ensayos de calidad


Acidos nucleicos - estructura de los Ácidos nucleicos, nucleÓtidos, estructura, modelo de doble helice del adn



Los ácidos nucleicos son biomoléculas orgánicas compuestas siempre por C, H, O, N, P. Son moléculas fibrilares (alargadas) gigantes no ramificadas, que desempeñan funciones biológicas de trascendental importancia en todos los seres vivos; contienen infor mación genética, es decir, la información que permite a los organismos disponer de lo necesario para desarrollar sus ciclos biológicos, desde su nacimiento a su muerte, además de contar el mensaje genético, también poseen las instrucciones precisas para su lectura.
Los ácidos nucleicos son biopolímeros, formada por unidades estructurales más pequeñas o monómeros denominados nucleótidos (a diferencia de los aminoácidos que constituyen cada uno una especie química definida, son moléculas complejas resultantes de la combinación de un ácido fosforito, un azúcar y una base nitrogenada).

ESTRUCTURA DE LOS ÁCIDOS NUCLEICOS
En 1953 Francis Crick y James Watson en una célebre de artículo publicado en la revista científica dieron a conocer la primera descripción de la estructura del DNA .



Los ácidos nucleicos consisten en subunidades de nucléotidos que son unidades moleculares consistentes en:
Un azúcar de cinco carbonos sea la ribosa o la desoxiribosa
Un grupo fosfato
Una base nitrogenada que es un compuesto anular que contiene nitrógeno pudiendo ser una purina de doble anillo.
Las bases púricas son la adenina (A) y guanina (G) y las pirimidinas son la citosina (C), timina(T) y uracilo (U)

NUCLEÓTIDOS
Los nucleótidos son moléculas orgánicas formadas por la unión covalente de un monosacárido de cinco carbonos (pentosa), una base nitrogenada y un grupo fosfato. El nucleósido es la parte del nucleótido formado únicamente por la base nitrogenada y la pentosa.
Son los monómeros de los ácidos nucleicos (ADN y ARN) en los cuales forman cadenas lineales de miles o millones de nucleótidos, pero también realizan funciones importantes como moléculas libres (por ejemplo, el ATP).
Son moléculas involucradas en un sin número de funciones claves en los procesos bioquímicos de las células del organismo. Actúan como reguladores metabólicos, son parte integral del sistema inmunológico, parte importante en el proceso de síntesis de proteínas, y tienen efectos en el microambiente intestinal y en la absorción y metabolismo de ciertos nutrimentos, sin olvidar que son los ladrillos de las moléculas que guardan la información genética. Los neonatos tienen una capacidad reducida de sintetizar nucleótidos, de ahí lo importante de su presencia en la leche que se toman.
Los nucleótidos se encuentran en todas las células vivas y desempeñan muchas funciones importantes. Una de ellas es intervenir positivamente en el metabolismo de las grasas y la función intestinal. Otra es la de ayudar a defender nuestro cuerpo contra las infecciones y las enfermedades.


Los nucleótidos son parte de muchos alimentos que comemostodos los días. Abundantes cantidades de estos componentes se encuentran en una variedas de alimentos, productos del mar, granos, vegetales y frutas. La leche materna contiene cantidades generosas de nucleótidos. En realidad, cuando lo alimentas con leche materna, el bebe recibre de 11 a 18 mg. de nucleótidos por día.

Estructura
Cada nucleótido es un ensamblado de tres componentes:
* Bases nitrogenadas: derivan de los compuestos heterocíclicos aromáticos purina y pirimidina.
* Bases nitrogenadas purínicas: son la adenina (A) y la guanina (G). Ambas forman parte del ADN y del ARN.
* Bases nitrogenadas pirimidínicas: son la timina (T), la citosina (C) y el uracilo (U). La timina y la citosina intervienen en la formación del ADN. En el ARN aparecen la citosina y el uracilo.
* Bases nitrogenadas isoaloxacínicas:la flavina (F). No forma parte del ADN o del ARN, pero sí de algunos compuestos importantes como el FAD
* Pentosa: el azúcar de cinco átomos de carbono; puede ser ribosa (ARN) o desoxirribosa (ADN). La diferencia entre ambos es que el ARN si posee un grupo OH en el segundo carbono.
* Ácido fosfórico: de fórmula H3PO4. Cada nucleótido puede contener uno (nucleótidos-monofosfato, como el AMP), dos (nucleótidos-difosfato, como el ADP) o tres (nucleótidos-trifosfato, como el ATP) grupos fosfato.
Un nucleotido resulta de la union de ácido fosfórico, la pentosa y una base nitrogenada; el nucleotido es launidad de los ácidos nucleicos. Constituye la base de los ácidos nucleicos.
MODELO DE DOBLE HELICE DEL ADN
Hace 52 años, el bioquímico estadounidense James Watson y el biólogo inglés Francis Crick publicaron en la revista Nature un artículo intitulado 'Molecular structure of nucleic acids. A structure of deoxyribose nucleicacid', que daba cuenta de los resultados de sus estudios sobre la clave de los grandes misterios de la vida: el secreto de la herencia biológica, para lo que proponían el modelo de la doble hélice del ácido desoxirribonucleico, o ADN. El modelo propuesto alcanzó gran importancia en la comprensión de la síntesis proteica, la replicación del ADN y las mutaciones. En ese año, los mismos autores publicaron otro artículo en la mencionada revista: 'Genetical implications of the structure of deoxyribonucleicacid', en el cual describieron las implicaciones biológicas de su descubrimiento. Entre ellas, resaltan que el ADN está compuesto de dos cadenas complementarias, una de las cuales actúa como patrón para duplicar a la otra, y que la secuencia de las bases adenina (abreviada como A), guanina (G), timina (T) y citosina (C) representa un código de información genética. En el artículo sobre las implicaciones de la estructura del ADN discuten la importancia de este modelo. Lo más importante es que la mutación espontánea puede ser originada por la introducción a la cadena de bases con formas tautoméricas (isómerosque existen en equilibrio); además, que la mutación se debe al apareamiento anormal de los cromosomas durante la meiosis, que es la división de las células sexuales que produce núcleos con la mitad del número de cromosomas.
Cada molécula de ADN está constituida por dos cadenas o bandas formadas por un elevado número de compuestos químicos llamados nucleótidos. Esas cadenas forman una especie de escalera retorcida que se llama doble hélice. Cada nucleótido está formado por tres unidades: una molécula de azúcar llamada desoxirribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: las mencionadas A, G, T y C. La molécula de desoxirribosa ocupa el centro del nucleótido y está flanqueada por un grupo fosfato de un lado y una base por el otro. El grupo fosfato está a su vez unido a la desoxirribosa del nucleótido adyacente de la cadena. Estas subunidades enlazadas desoxirribosa-fosfato forman los lados de la escalera; las bases están enfrentadas por parejas, 'mirando', por decirlo así, hacia el interior y forman los travesaños. Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica con los correspondientes de la otra cadena. Debido a la afinidad química entre las bases, los nucleótidos que contienen adenina se acoplan siempre con los que contienen timina, y los que contienen citosina con los que contienen guanina. Las bases complementarias se unen entresí por enlaces químicos débiles llamados enlaces de hidrógeno.

ARN
El ácido ribonucleico es un ácido nucleico formado por una cadena de ribonucleótidos. Está presente tanto en las células procariotas como en las eucariotas, y es el único material genético de ciertos virus (virus ARN). El ARN celular es lineal y de hebra sencilla, pero en el genoma de algunos virus es de doble hebra. En los organismos celulares desempeña diversas funciones. Es la molécula que dirige las etapas intermedias de la síntesis proteica; el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo). Varios tipos de ARN regulan la expresión génica, mientras que otros tienen actividad catalítica. El ARN es, pues, mucho más versátil que el ADN.


Tipos de ARN
ARN implicados en la síntesis de proteínas
• ARN mensajero: lleva la información sobre la secuencia de aminoácidos de la proteína desde el ADN, lugar en que está inscrita,hasta el ribosoma, lugar en que se sintetizan las proteínas de la
célula. Es una molécula intermediaria entre el ADN y la proteína. En eucariotas, el ARNm se sintetiza en el nucleoplasma del núcleo celular y de allí accede al citosol, donde se hallan los ribosomas, a través de los poros de la envoltura nuclear.
• ARN de transferencia: son cortos polímeros de unos 80 nucleótidosque transfiere un aminoácido específico al polipéptido en crecimiento; se unen a lugares específicos del ribosoma durante la traducción. ienen un sitio específico para la fijación del aminoácido (extremo 3') y un anticodón formado por un triplete de nucleótidos que se une al codón complementario del ARNm mediante puentes de hidrógeno.
• ARN ribosómico: se halla combinado con proteínas para formar los ribosomas, donde representa unas 2/3 partes de los mismos. En procariotas, las subunidad mayor del ribosoma contiene dos moléculas de ARNr y la subunidad menor, una. En los eucariotas, la subunidad mayor contiene tres moléculas de ARNr y la menor, una. En ambos casos, sobre el armazón constituido por los ARNr se asocian proteínas específicas. El ARNr es muy abundante hallado en el citoplasma de las células eucariotas. Los ARNr son el componente catalítico de los ribosomas; se encargan de crear los enlaces peptídicos entre los aminoácidos del polipéptido en formación durante la síntesis de proteínas; actúan, pues, como ribozimas.
ARN reguladores
Muchos tipos de ARN regulan la expresión génica gracias a que son complementarios de regiones específicas del ARNm o de genes del ADN.
• ARN de interferencia: (ARNi o iRNA) son moléculas de ARN que suprimen la expresión de genes específicos mediante mecanismos conocidos globalmente como ribointerferencia o interferencia por ARN. Los ARN interferentes son moléculas pequeñas (de 20 a 25nucléotidos) que se generan por fragmentación de precursores más largos. Se pueden clasificar en tres grandes grupos:
a—‹ Micro ARN: (miARN o RNAmi) son cadenas cortas de 21 ó 22 nucleótidos hallados en células eucariotas que se generan a partir de precursores específicos codificados en el genoma.
a—‹ ARN interferente pequeño: (ARNip o siARN), formados por 20-25 nucleótidos, se producen con frecuencia por rotura de ARN virales, pero pueden ser también de origen endógeno.
• ARN asociados a Piwi: son cadenas de 29-30 nucleótidos, propias de animales; se generan a partir de precursores largos monocatenarios, en un proceso que es independiente de Drosha y Dicer.
• ARN antisentido: es la hebra complementaria (no codificadora) de una hebra ARNm (codificadora). La mayoría inhiben genes, pero unos pocos activan la transcripción. El ARN antisentido se aparea con su ARNm complementario formando una molécula de doble hebra que no puede traducirse y es degradada enzimáticamente. Un mARN antisentido marcado radioactivamente puede usarse para mostrar el nivel de transcripción de genes en varios tipos de células.
• ARN largo no codificante: (ARNnc largo o long ncARN) regulan la expresión génica en eucariotas;[ uno de ellos es el Xist que recubre uno de los dos cromosomas X en las hembras de los mamíferos inactivándolo (corpúsculo de Barr).
• Riboswitch: es una región del ARNm al cual puedenunirse pequeñas moléculas señalizadoras que afectan la actividad del gen. Por tanto, un ARNm que contenga un riboswitch está directamente implicado en la regulación de su propia actividad que depende de la presencia o ausencia de la molécula señalizadora.
ARN con actividad catalítica
• Ribozimas. El ARN puede actuar como biocatalizador. Ciertos ARN se asocian a proteínas formando ribonucleoproteínas y se ha comprobado que es la subunidad de ARN la que lleva a cabo las reacciones catalíticas; estos ARN realizan las reacciones in vitro en ausencia de proteína. Se conocen cinco tipos de ribozimas; tres llevan a cabo reacciones de automodificación, los otros 2actúan sobre substratos distintos.
• Espliceosoma. Los intrones son separados del pre-ARNm durante el proceso conocido como splicing por los espliceosomas, que contienen numerosos ARN pequeños nucleares (ARNpn o snRNA). • ARN pequeño nucleolar: (ARNpno o snoRNA), hallados en el nucleolo y en los cuerpos de Cajal, dirigen la modificación de nucleótidos de otros ARN;el proceso consiste en transformar alguna de las cuatro bases nitrogenadas típicas (A, C, U, G) en otras.
ARN mitocondrial
La mitocondrias tienen su propio aparato de síntesis proteica, que incluye ARNr (en los ribosomas), ARNt y ARNm. Los ARN mitocondriales (ARNmt o mtARN) representan el 4% del ARN celular total . Son transcritos por una ARN polimerasa mitocondrial específica

Nelly Jesús Torrejón Herrera





Política de privacidad